Maximum-likelihood source localization and unknown sensor location estimation for wideband signals in the near-field
نویسندگان
چکیده
In this paper, we derive the maximum-likelihood (ML) location estimator for wideband sources in the near field of the sensor array. The ML estimator is optimized in a single step, as opposed to other estimators that are optimized separately in relative time-delay and source location estimations. For the multisource case, we propose and demonstrate an efficient alternating projection procedure based on sequential iterative search on single-source parameters. The proposed algorithm is shown to yield superior performance over other suboptimal techniques, including the wideband MUSIC and the two-step least-squares methods, and is efficient with respect to the derived Cramér–Rao bound (CRB). From the CRB analysis, we find that better source location estimates can be obtained for high-frequency signals than low-frequency signals. In addition, large range estimation error results when the source signal is unknown, but such unknown parameter does not have much impact on angle estimation. In some applications, the locations of some sensors may be unknown and must be estimated. The proposed method is extended to estimate the range from a source to an unknown sensor location. After a number of source-location frames, the location of the uncalibrated sensor can be determined based on a least-squares unknown sensor location estimator.
منابع مشابه
Windowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملWindowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملThree Dimensional Localization of an Unknown Target Using Two Heterogeneous Sensors
Heterogeneous wireless sensor networks consist of some different types of sensor nodes deployed in a particular area. Different sensor types can measure different quantity of a source and using the combination of different measurement techniques, the minimum number of necessary sensors is reduced in localization problems. In this paper, we focus on the single source localization in a heterogene...
متن کاملA maximum-likelihood parametric approach to source localizations
Source localization using passive sensor arrays has been an active research problem for many years. Most near-field source localization algorithms involve two separate estimations, namely, relative time-delay estimations and source location estimation. In this paper, a one-step maximum-likelihood parametric source localization algorithm is proposed based on the maximum correlation between time ...
متن کاملA New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion
This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 50 شماره
صفحات -
تاریخ انتشار 2002